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1. For an insulator with linear magnetic properties, the bound current is given by

Jb = ∇× �M = ∇× χm
�H = χmJf = 0, (1)

where Jf = 0 since the material is an insulator, which does not support free, time independent flowing currents.

2. and

3. (a) The normal to the sphere is r̂, so the bound surface current is given by,

�Kb = �M × n̂ = M ẑ × r̂ = Msinθφ̂. (2)

Since ∇ · �M = 0 inside the sphere, there is no volume current density.

(b) The magnetic field of an ideal magnetic dipole is given by Griffiths 5.87,

�B(�r) =
µ

4πr3
(3(�m · r̂)r̂ − �m) =

µM0b
3

3r3
(3 cos θr̂ − ẑ). (3)

(c) The boundary conditions state,
�Babove − �Bbelow = µ0

�Kb × n̂ (4)

so we have,

�Bbelow =
µ0M0

3
(3 cos θr̂ − ẑ)− µ0Msinθφ̂× r̂ = µ0M0(cos θr̂+ sin θθ̂− 1

3
ẑ) =

2µ0M0

3
ẑ. (5)

(d) Inside the sphere, we have,
�H =

1
µ0

�B − �M =
2M0

3
ẑ −M0ẑ = −M0

3
ẑ. (6)

Now, outside the sphere, �M = 0, so �H = �B/µ0 and we can use the expression we derived in part (a),
evaluated in the regions above (θ = 0,r = |z|, r̂ = ẑ) and below (θ = π, r = |z|, r̂ = −ẑ) the sphere,

∫ ∞

−∞
�H · ẑdz = −

∫ b

−b

M0

3
dz +

∫ −b

−∞

µM0b
3

3|z|3 (3(cosπ)(−ẑ)− ẑ) · ẑdz +
∫ ∞

b

µM0b
3

3|z|3 (3ẑ − ẑ) · ẑdz

= −2bM0

3
+ 2

∫ ∞

b

2µM0b
3

3|z|3 dz = −2bM0

3
+

2M0b

3
= 0.

(7)

(e) We use the divergence theorem for an infinitessimal Gaussian pillbox P with boundary B with top and
bottom surface area A, and the expressions for �H above to find,

∫
P

∇ · �H =
∫

B

�H · d�a = A( �Habove − �Hbelow) · ẑ = A(
2M0

3
+

M0

3
) = AM0. (8)

Thus, we see that ∇· �H cannot possibly vanish everywhere, as its integral over this pillbox does not vanish.

4. (a) First, we compute the bound surface current around the rim of the nickel, expressed in terms of cylindrical
coordinates,

�Kb(s = a, |z| < d) = �M × n̂ = M0ẑ × ŝ = M0φ̂. (9)

Thus, we can think of the magnetized nickel as a bunch of current loops circulating around its edge. To find
the result for the magnetic field at the origin, we can integrate the result (Griffiths 5.38) for the magnetic
field due along the z-axis for a single current loop from z = −d/2 (this represents the contribution of the
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uppermost loop to the magnetic field at the origin) to z = d/2 (the contribution of the lowest loop), where
dI = M0dz,

B(0, 0, 0) =
∫

dB =
∫

µ0dI

2
a2

(a2 + z2)3/2
=

µ0M0a
2

2

∫ d/2

−d/2

dz

(a2 + z2)3/2
=

µ0dM0

2
√

a2 + d2/4

≈ µ0M0d

2a
− µ0M0d

3

16a3
.

(10)

Clearly, only the first term is needed, but we write out the second term for future reference. As the
magnetic field always points in the ẑ direction along the z-axis for a current loop, it also points upwards
here.

(b) The magnetic flux through a loop of radius s can be determined by doing an integral of �A over the loop.
As �A is evaluated only at s = b � a on the loop, the first order contribution in d/b � a/b � 1 to �A

comes from the dipole term. The dipole moment of the nickel is �m = πa2dM ẑ, giving rise to the vector
potential of Griffiths 5.83,

�A(�r) =
µ0

4π
�m× r̂
r2

. (11)

We can use this expression to compute the magnetic flux,

ΦB =
∮

s=b

A · d�l = µ0

4π

∫ 2π

0,s=b

πa2dM

s2
(ẑ × ŝ) · φ̂dφ =

µ0

2
πa2dM

b2
. (12)

5. (a) Using cyclindrical symmetry, we know that �H and the magnetic field is always in the φ̂ direction and
independent of z. Thus, we apply Ampere’s Law to circles centered at the origin in the z = 0 plane of
successively larger radii,

∮
<a

�H<a · d�l = 2πsH<a(s) = If,enc = I

(
s2

a2

)
⇒ H<a(s) =

Is

2πa2
, (13)

∮
>a

�H>a · d�l = 2πsH>a(s) = If,enc = I ⇒ H>a(s) =
I

2πs
, (14)

(b) Now, neglecting the weak diamagnetism of copper, we expect that for the regions s < a and s > b, �M = 0
and �B = µ0

�H, while for a < s < b we have �B = µ �H and �M = (µr − 1) �H. Thus, we also get that �B and
�M point in the φ̂direction and have magnitudes given by,

B<a(s) =
µ0Is

2πa2
= M<a(s) = 0, (15)

Ba<s<b(s) =
µI

2πs
= Ma<s<b(s) =

(µr − 1)I
2πs

, (16)

B>d(s) =
µ0I

2πs
= M>b(s) = 0. (17)

(c) The only region in which we have non-vanishing �M is the region a < s < b, so the bulk bound current
density there is,

�J(s) = ∇× �M =
1
s

∂

∂s
(sMφ)ẑ = 0. (18)

We get surface bound current densities from the surface s = a (where we need to take the inward pointing
normal vector) and s = b (the outward pointing normal vector) given by,

�Ks=a = �M(s = a)× (−ŝ) = − (µr − 1)I
2πa

φ̂× ŝ =
(µr − 1)I

2πa
ẑ (19)

�Ks=b = �M(s = b)× ŝ =
(µr − 1)I

2πb
φ̂× ŝ = − (µr − 1)I

2πb
ẑ. (20)
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(d) Outside the Ferrite,

µ0
�B = �H ⇒

∮
µ0

�B · d�l = If + Ib =
∮

�H · d�l = If ⇒ Ib = 0 (21)

We can verify this using the bound surface densities computed above,

Ib = 2πa �Ks=a · ẑ+ 2πb �Ks=b · ẑ = (µr − 1)I − (µr − 1)I = 0. (22)

6. We use the hysteresis curve of Fig 6.29, and note that the top curve describes our system - it has been run into
saturation on the far right, and is brought back down to zero H ∝ I. The residual magnetic field inside the
cylindrical rod can be read off by approximating the y-intercept of curve, which is about B = 0.75T . However,
there is a gap in this configuration, and we want the magnetic field in that gap. If the gap was not present, this
would be just B = 0.75. So, we model this gap by a superposition of a full toroidal iron rod and a nickel-like
chunk of material with a constand but opposite magnetization M = −B/µ0 = −0.75T/µ0. Now, we just need
to subtract the contribution of this nickel to the magnetic field at the origin - but we calculated this to the
required accuracy in problem 4a, with d = 0.1cm and a = 1cm, and with ten percent accuracy,

∆B =
µ0M0d

2a
= −0.75T × (0.1cm)/(2cm) = −0.038T ⇒ B = 0.75T − 0.038T ≈ 0.7T. (23)

7. Just as above, we think of this system as a toroid with constant magnetization superposed with a nickel-like
chunk with the opposite magnetization. The toroid has a constant magnetization �M = M0φ̂. Since the normal
vector to the toroid at its surface is always perpendicular to �M , we get a constant surface current density of
magnitude K = | �M × n̂| = M0 circulating around the axis of the rod1. Thus, we are exactly in the situation
of Griffiths example 5.10, and using the fact that the total current enclosed by the Amperian loop is 2πsM0,
we have

B =
µ0(2πsM0)

2πs
= µ0M0. (24)

Now, we just need to remove the effect of the nickel-like chunk, which we can do just as above, but including
an extra term,

∆B =
µ0M0d

2a
− µ0M0d

3

16a3
= −µ0M0 × (

1
20

− 1
16000

) ⇒ B = µ0M0 × (1− 1
20

+
1

16000
) ≈ 0.95µ0M0. (25)

8. We can undo the magnetization in at least a couple of different ways. One way to do this is to apply negative
and positive currents in alternating patterns with amplitudes well below those needed for saturation. As we
expect the curves on the way up to always stay below the curves on the way down, this will eventually lead to
lower and lower magnetizations at zero current, until we finally hit zero magnetization at zero current. Another
way to undo the magnetization is to heat up the iron above its Curie temperature.

1In making this statement, we have really made an approximation - bending the rod into a C should have resulted in a profile in which

the magnetizations are slightly lower on the outside, thereby resulting in surface currents densities that vary accordingly.
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